Introduction
Previously, a Python Code solved the SI Epidemiological Differential equation model. Here, we give an implementation of the SIS model. Then, I compare the computer generated solution to the analytic solution. In addition, the new code adds the ability to store the results in a comma delimited file that can be read by Excel.
Since we need a test case: the Hubei data will continue to serve that purpose.
Implementation of the SIS model.
We added the term to the right hand side of the differential equation for the number of people that are infected. This is in the function definition of f in the value of derivative. The other major addition is the code at the end that allows the user to store the information in a file.
Parameter selection
The Hubei data determined the parameter . The recovery rate for COVID-19 determines the parameter . After running the software, we used the comma delimited code as input to Excel to generate the graph. Below is the graphical output of the results. The population units are in thousands of people, so 40,000 on the vertical axis represents 40,000,000 infected people. The agreement between the formula and the computer solution (circles) is excellent.
Eventually, the infected population rises to just under 83% of the population. This does not mean that 17% of the population is unaffected. Eventually everyone gets the disease. What is true in this simulation is that at the end for every person that recovers another gets sick, so that at any time 83% of the population is sick. So this curve is not representing a herd immunity, it represents massive sickness.
This represents one thousand more infections than the Hubei data indicates. No reasonable person would stand by and watch the entire population get infected without trying some defensive measures. In the absence of a vaccine the only way to reduce the infections is changing the infection rate. In the case of the model this means adopting measures that reduce the parameter plam in the code or in the theory. We do that in the next code segment.
Links
To return to the main page for the SIS model go here. https://davidalarrabee.com/?page_id=754
If you want to see the modification for a varying follow this link. (TBD)
The Python Code
# ************** SIS Model differential equation Solver vs. 1.01 May 20, 2020
# miscellaneious constants and stuff
Title = "SIS Model Differential Equation Solver"
Vers = "vs. 1.01 May 20, 2020 David A. Larrabee"
EOL = "\n"
Header = " day, Susceptible, infectious, formula, error, % infected "
e=2.7182818284 # Euler's number (approx)
# ***************************************************************************
# Imports and definitions
# **************************************************************************
import numpy as np
from scipy.integrate import odeint
def f(y, t, parm): # returns the derrivative of f(t) (y)
I = y[0] # get the current value of y
plam,gammar, Npop = parm # get the parameter
derivative = [plam*I*(1-I/Npop)] -gammar*I # calculate the derrivative
return derivative
#****************************************************************************
# These are parameters the User can Input
#****************************************************************************
plam = 0.2587 # growth rate at start (infections per day per infector)
gammar = 0.045 # the daily probability of recovery from the virus
Npop = 58500 # Total "population" (Hubei in thousands)
I0 = 1.619 # Initial number of infected (hubei in thousdands)
Finaltime = 90. # The sumulation goes from time = 0 to here (in days)
Increment = 1.0 # How often you want the result retured (in days)
#****************************************************************************
# Set up for the simulation
#****************************************************************************
print(Title)
print(Vers)
print(" ")
parm = [plam,gammar, Npop] #ODE solver wants a list of Parameters
y0 = [I0] #ODE also wants a list of initial values
# Make an array of the times at which we want a solution
times = np.arange(0.0, Finaltime, Increment)
#*************************************************************
# Call the ODE solver
#*************************************************************
Solutions = odeint(f, y0, times, args=(parm,))
#*******************************************************************
# Compare the results to theory and print out the results to screen
#*******************************************************************
print(Header)
lambdastar = plam - gammar
Nstar=Npop*lambdastar/plam
for i in range(len(times)): # printout and compare with actual solution
t = times[i]
I = Solutions[i,0]
S = Npop - I
val = Nstar/(1+(Nstar-I0)/I0 * e**(-1.0*lambdastar*t) ) # analytic solution
error = (val-I)/val
pinfect = I/Npop*100.0
print("{:4.1f}".format(t), "{:11.1f}".format(S),"{:11.1f}".format(I),
"{:11.1f}".format(val)," ","{:+8.4E}".format(error),
" ","{:8.4f}".format(pinfect) )
#*******************************************************************
# drop the results to a file?
#*******************************************************************
ans = input("insert filename to store results in a file. type N to finish: ")
if ans != "N":
fhandler=open(ans,"a")
strng=Title + EOL + Vers+EOL
strng=strng+'Total number of people =, '+str(Npop)+ EOL
strng=strng+"Total number of people initially infected =, "
strng=strng+str(I0)+EOL
strng=strng+" lanmbda =,"+str(plam)+EOL
strng=strng+" gammar =,"+str(gammar)+EOL
strng=strng+" Ending time, "+str(Finaltime)+EOL
strng=strng+" fraction of a day in a timestep, "+str(Increment)+EOL
strng = strng+Header+EOL
fhandler.write(strng)
for i in range(len(times)): # printout and compare with actual solution
t = times[i]
I = Solutions[i,0]
S = Npop - I
val = Nstar/(1+(Nstar-I0)/I0 * e**(-1.0*lambdastar*t) ) # analytic solution
error = (val-I)/val
pinfect = I/Npop*100.0
strng = str(times[i])+","
strng = strng+str(S)+","
strng = strng+str(I)+","
strng = strng+str(val)+","
strng = strng+str(error)+","
strng = strng+str(pinfect)+EOL
fhandler.write(strng)
fhandler.close()
print("All Done")
Code output
SIS Model Differential Equation Solver
vs. 1.01 May 20, 2020 David A. Larrabee
day, Susceptible, infectious, formula, error, % infected
0.0 58498.4 1.6 1.6 +0.0000E+00 0.0028
1.0 58498.0 2.0 2.0 +8.5523E-09 0.0034
2.0 58497.5 2.5 2.5 +4.4555E-09 0.0042
3.0 58496.9 3.1 3.1 -1.5477E-09 0.0053
4.0 58496.2 3.8 3.8 -1.6275E-08 0.0065
5.0 58495.3 4.7 4.7 -2.1809E-08 0.0081
6.0 58494.2 5.8 5.8 -2.4312E-08 0.0100
7.0 58492.8 7.2 7.2 -2.7152E-08 0.0124
8.0 58491.1 8.9 8.9 -3.2746E-08 0.0153
9.0 58488.9 11.1 11.1 -3.0027E-08 0.0189
10.0 58486.3 13.7 13.7 -3.1853E-08 0.0234
11.0 58483.0 17.0 17.0 -3.3154E-08 0.0290
12.0 58479.0 21.0 21.0 -3.4854E-08 0.0359
13.0 58474.0 26.0 26.0 -3.8679E-08 0.0445
14.0 58467.8 32.2 32.2 -4.2226E-08 0.0551
15.0 58460.1 39.9 39.9 -4.6448E-08 0.0682
16.0 58450.6 49.4 49.4 -4.9390E-08 0.0845
17.0 58438.8 61.2 61.2 -5.2512E-08 0.1045
18.0 58424.3 75.7 75.7 -5.6076E-08 0.1294
19.0 58406.3 93.7 93.7 -5.8664E-08 0.1602
20.0 58384.0 116.0 116.0 -6.0944E-08 0.1983
21.0 58356.5 143.5 143.5 -6.3416E-08 0.2454
22.0 58322.4 177.6 177.6 -6.5065E-08 0.3036
23.0 58280.3 219.7 219.7 -6.6262E-08 0.3756
24.0 58228.2 271.8 271.8 -6.8173E-08 0.4646
25.0 58163.9 336.1 336.1 -6.7771E-08 0.5745
26.0 58084.5 415.5 415.5 -6.5615E-08 0.7102
27.0 57986.6 513.4 513.4 -6.1783E-08 0.8776
28.0 57865.9 634.1 634.1 -5.6112E-08 1.0840
29.0 57717.3 782.7 782.7 -4.7385E-08 1.3380
30.0 57534.5 965.5 965.5 -3.4910E-08 1.6505
31.0 57310.1 1189.9 1189.9 -1.8972E-08 2.0340
32.0 57035.2 1464.8 1464.8 -1.9531E-09 2.5039
33.0 56699.2 1800.8 1800.8 -5.0459E-09 3.0782
34.0 56289.8 2210.2 2210.2 +3.9211E-09 3.7781
35.0 55792.7 2707.3 2707.3 +7.6439E-09 4.6278
36.0 55191.9 3308.1 3308.1 +1.2609E-08 5.6549
37.0 54469.5 4030.5 4030.5 +1.4466E-08 6.8898
38.0 53606.4 4893.6 4893.6 +1.3057E-08 8.3651
39.0 52583.3 5916.7 5916.7 +3.8318E-09 10.1140
40.0 51381.3 7118.7 7118.7 -1.0640E-08 12.1687
41.0 49984.1 8515.9 8515.9 -2.7129E-08 14.5570
42.0 48380.1 10119.9 10119.9 -2.5799E-08 17.2990
43.0 46564.5 11935.5 11935.5 -2.6669E-08 20.4025
44.0 44542.3 13957.7 13957.7 -3.2034E-08 23.8594
45.0 42329.6 16170.4 16170.4 -2.8104E-08 27.6417
46.0 39955.4 18544.6 18544.6 -2.6947E-08 31.7001
47.0 37460.8 21039.2 21039.2 -8.7815E-09 35.9645
48.0 34896.5 23603.5 23603.5 +1.0488E-08 40.3478
49.0 32319.6 26180.4 26180.4 +9.4684E-09 44.7528
50.0 29788.1 28711.9 28711.9 +8.4971E-09 49.0801
51.0 27356.1 31143.9 31143.9 +8.6682E-09 53.2374
52.0 25069.3 33430.7 33430.7 +2.8838E-09 57.1465
53.0 22961.9 35538.1 35538.1 +4.5598E-10 60.7489
54.0 21055.6 37444.4 37444.4 -7.8452E-10 64.0075
55.0 19360.1 39139.9 39139.9 -2.0320E-09 66.9058
56.0 17874.5 40625.5 40625.5 -6.1598E-10 69.4453
57.0 16589.8 41910.2 41910.2 +2.3381E-09 71.6413
58.0 15491.5 43008.5 43008.5 +4.1657E-09 73.5189
59.0 14561.5 43938.5 43938.5 +5.7158E-09 75.1085
60.0 13780.6 44719.4 44719.4 +6.0279E-09 76.4434
61.0 13129.4 45370.6 45370.6 +1.1957E-08 77.5565
62.0 12589.5 45910.5 45910.5 +1.7243E-08 78.4794
63.0 12144.0 46356.0 46356.0 +2.1152E-08 79.2410
64.0 11777.9 46722.1 46722.1 +2.2026E-08 79.8668
65.0 11478.0 47022.0 47022.0 +2.1090E-08 80.3796
66.0 11232.9 47267.1 47267.1 +1.9782E-08 80.7985
67.0 11033.1 47466.9 47466.9 +1.8050E-08 81.1399
68.0 10870.6 47629.4 47629.4 +1.5862E-08 81.4178
69.0 10738.5 47761.5 47761.5 +1.7373E-08 81.6437
70.0 10631.2 47868.8 47868.8 +1.7503E-08 81.8270
71.0 10544.3 47955.7 47955.7 +1.7213E-08 81.9756
72.0 10473.8 48026.2 48026.2 +1.7399E-08 82.0960
73.0 10416.8 48083.2 48083.2 +1.7294E-08 82.1935
74.0 10370.6 48129.4 48129.4 +1.6992E-08 82.2724
75.0 10333.3 48166.7 48166.7 +1.7758E-08 82.3363
76.0 10303.1 48196.9 48196.9 -6.0195E-10 82.3879
77.0 10278.7 48221.3 48221.3 -2.8438E-09 82.4297
78.0 10258.9 48241.1 48241.1 +9.7570E-10 82.4634
79.0 10243.0 48257.0 48257.0 +8.5952E-10 82.4907
80.0 10230.1 48269.9 48269.9 -6.7638E-10 82.5127
81.0 10219.6 48280.4 48280.4 +6.5238E-10 82.5305
82.0 10211.2 48288.8 48288.8 -6.4362E-11 82.5449
83.0 10204.4 48295.6 48295.6 -9.1762E-10 82.5565
84.0 10198.9 48301.1 48301.1 -3.4805E-10 82.5659
85.0 10194.5 48305.5 48305.5 -3.5870E-10 82.5735
86.0 10190.9 48309.1 48309.1 -5.8520E-10 82.5796
87.0 10188.0 48312.0 48312.0 -4.5463E-10 82.5846
88.0 10185.7 48314.3 48314.3 -3.5481E-10 82.5886
89.0 10183.8 48316.2 48316.2 -5.1384E-10 82.5918
insert filename to store results in a file. type N to finish: SISfl01.csv
All Done